From Word Embeddings To Document Distances
نویسندگان
چکیده
We present the Word Mover’s Distance (WMD), a novel distance function between text documents. Our work is based on recent results in word embeddings that learn semantically meaningful representations for words from local cooccurrences in sentences. The WMD distance measures the dissimilarity between two text documents as the minimum amount of distance that the embedded words of one document need to “travel” to reach the embedded words of another document. We show that this distance metric can be cast as an instance of the Earth Mover’s Distance, a well studied transportation problem for which several highly efficient solvers have been developed. Our metric has no hyperparameters and is straight-forward to implement. Further, we demonstrate on eight real world document classification data sets, in comparison with seven stateof-the-art baselines, that the WMD metric leads to unprecedented low k-nearest neighbor document classification error rates.
منابع مشابه
Hyperspherical Query Likelihood Models with Word Embeddings
This paper presents an initial study on hyperspherical query likelihood models (QLMs) for information retrieval (IR). Our motivation is to naturally utilize pretrained word embeddings for probabilistic IR. To this end, key idea is to directly leverage the word embeddings as random variables for directional probabilistic models based on von Mises-Fisher distributions that are familiar to cosine ...
متن کاملConnected Component Based Word Spotting on Persian Handwritten image documents
Word spotting is to make searchable unindexed image documents by locating word/words in a doc-ument image, given a query word. This problem is challenging, mainly due to the large numberof word classes with very small inter-class and substantial intra-class distances. In this paper, asegmentation-based word spotting method is presented for multi-writer Persian handwritten doc-...
متن کاملSummarization Based on Embedding Distributions
In this study, we consider a summarization method using the document level similarity based on embeddings, or distributed representations of words, where we assume that an embedding of each word can represent its “meaning.” We formalize our task as the problem of maximizing a submodular function defined by the negative summation of the nearest neighbors’ distances on embedding distributions, ea...
متن کاملA New Document Embedding Method for News Classification
Abstract- Text classification is one of the main tasks of natural language processing (NLP). In this task, documents are classified into pre-defined categories. There is lots of news spreading on the web. A text classifier can categorize news automatically and this facilitates and accelerates access to the news. The first step in text classification is to represent documents in a suitable way t...
متن کاملMultilingual Training of Crosslingual Word Embeddings
Crosslingual word embeddings represent lexical items from different languages using the same vector space, enabling crosslingual transfer. Most prior work constructs embeddings for a pair of languages, with English on one side. We investigate methods for building high quality crosslingual word embeddings for many languages in a unified vector space. In this way, we can exploit and combine infor...
متن کامل